友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
86读书 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

阿基米德的报复-第9章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




    因为右手和左手都是众所周知的镜像,所以人们习惯地把与其镜像相反的物体称为左手的或右手的。在一对镜像物中,究竟哪一个叫做像,是一个习惯问题。这正如街道的右侧不存在绝对位置一样,它取决于你行走的方向。两种麦比乌斯带已被人们称为右旋和左旋的麦比乌斯带,但是不必担心何者右旋,何者左旋。分子也存在右旋和左旋形式,人们称它们为手性,它是从希腊词“手(Cheir)”借用来的。

    右旋和左旋麦比乌斯带都是镜像形状的实例,从拓扑学来看,它们在性质上是截然不同的,但有着等价的镜像形状。现以一简单图形为例,一个圆形是它本身的镜像,显然,从拓扑学上看,圆形与它本身是等价的。

    另一个例子是字母R及其镜像Я。若用软橡胶制成图形R,那么可以用拓扑学的变形方法把它变换成为它的镜像。

    可是,分子不是软橡胶制成的,物理的约束力防止它们以任何方式发生变形。尽管如此,R形分子还是能够转变成为它的镜像,无须弯曲变形——的确根本不需要弯曲。这次,如果把用硬塑料制成的字母图形R及其镜像Я放在桌子上,那么,只要把它拿起来翻转,就能使其中一个变成另一个。

    这种变换由于物体始终保持其刚性,所以叫做刚性变换。

    许多有机分子都是刚性的手性分子:它与它的镜像在刚性上是截然不同的。人体明显偏爱某种手征的手性分子。例如,大多数的蛋白质都是由左旋氨基酸和右旋糖组成的。当手性分子在人体内合成时,只能产生具有所需手征的手性分子。

    但是,当诸如药物等手性分子在实验室内用非生物方法合成时,结果都是右旋与左旋形式分子的对半混合。当病人服药时,由于难于除掉不是所需形式的分子,所以服用的是混合物。一般说来,非所需形式的分子在生物学上是惰性的,而且只是经过身体,无任何作用。有时还是有害的。60年代初期,就曾发生给妊娠妇女服用擦里多米德药物事件。药物中的右旋分子具有所需的镇静药性,而左旋分子却能造成新生儿畸形。

    英国伦敦皇家学院化学教授斯蒂芬。梅森在英国周刊《新科学家》发表的文章中,注意到收入标准药物手册中的486种合成生产的手性药物,只有88种是由所需的手征分子组成的。其余的398种全都是对半的混合物。梅森得出了结论:“它们都是在特定环境(人体)中使用,某种手征会得到特别的偏爱。可是,效果又会怎样呢?”

    当一位有机化学家分析一种新分子时,首先要做的事是试图确定分子是否刚性的手性分子,即在刚性上与其镜像是否截然不同。这里可借助于拓扑学。从拓扑学上看,如果分子与其镜像性质不同,那么它们在刚性上也是不同的,因为刚性变换只能是许多通过拓扑学完成的变换中的一种。还以上面讨论过的R及其镜像Я作为例子。在从一个变形成为另一个时,可以得到一种中间的形状Я,它具有对称性,其左半是其右半的镜像。

    拓扑学家们知道,如果一种形状能够变形成为某种具有反射对称性的形状,那么该形状本身就能够变形成为其镜像。这就意味着,如果化学家能够让分子获得具有反射对称性的形状,那么,他就能消除分子的手性。

    这种见解往往证明是有用的。沃尔巴已经从三级梯形分子中合成出分子的麦比乌斯带,他请我去直接观察从两级梯形分子中合成的类似方法。所得到的形状是手性吗?如下图所示,由于它能变换成为具有反射对称性的形状,所以不是手性的。

    可惜,这种解释对于三级麦比乌斯分子似乎不起作用。经过许多思考实验之后,沃尔巴推测,好像它不可能变形成为具有反射对称性的形状。如果变形后已经显示出反射对称性,那么他就会断定,三级麦比乌斯形状可以变形成为它的镜像。可是,这样的逆叙正确吗?任何变形未能显示出反射对称性,是否意味着分子本身就不能变形成为其镜像?

    毛病就出在答案太容易上。沃尔巴请我考虑两只橡胶手套,一只为右手的,另一只则是左手的。

    手套显然都是镜像的,可是从拓扑学来看,它们等价吗?当然,手套在刚性上是不等价的,因为如果我们像翻转字母R那样翻转两只手套中的一只来获得镜像,那是行不通的。然而,如果我们把任何一只手套从里往外翻转,那么就能使手套成为等价。

    (拓扑学家因而发现它自己处在一个奇特的位置上,既不能认为手套是右手的,也不能认为是左手的。)在把手套从里往外翻转的过程中,手套在任何步骤都不具有反射对称性。

    我们也许能够得出结论,手套是一个反例:某种形状在拓扑学上与其镜像等价,但在其变形过程中却不具备反射对称性。这种结论可能是错误的。只是我们没有让手套充分变形。如果我们使劲拽开手套,那么至少在理论上能够把手套变形成为一个圆盘的形状,这时手套就具有反射对称性(沿任何直径方向都有反射对称性)。

    以上讨论的要点是,沃尔巴在化学方面的一些研究已向拓扑学家提出一个重要问题:如果某种形状在变形过程中不可能具备反射对称性,那么是否可以得出结论,从拓扑学上看,形状本身与其镜像不等价呢?这是一个基本问题,但在数学文献上,好像还没有人提出来过。

    这个问题整个都牵扯到一个重要的哲学问题:物理科学上的新概念是否常常会启迪出数学上的新概念?或者反之?换句话说,何者在先,是物理科学,还是数学?许多哲学家遇到过这个问题,这与众所周知的关于鸡和蛋何者在先的问题一样,答案看来是不会令人满意的。

    在这两种情况下,人们所得出的结论,似乎不是一个不可置否的证据,而是一个目的性的试验。一些步柏拉图后尘的专横数学家断言,他们的学科是与物理学实际相脱离的。他们认为,即使没有可供计数的物体,数字也会存在。不大固执的数学家们则承认,科学与数学是紧密相连的,但他们坚持数学在先。他们提出群论作为证据,群论是数学的一门分支学科,在19世纪30年代诞生,它完全没有物理学上的用途,只是最近才被粒子物理学家应用,以便用于研究过去20年内发现的亚原子粒子集。

    但是,物理学家们则相信他们的学科在先,而且认为历史是站在他们一边。例如伊萨克。牛顿创造了数学中著名的分支学科微积分,就是因为他当时需要一种数学工具,用来分析极小的空间与时间间隔。而我认为,数学与科学都相得益彰,才是惟一公正的结论,尽管这种判断既不鼓舞人心,也不增进知识。麦比乌斯带的故事就是数学与物理科学之间错综复杂相互促进关系的一个很好的实例。1858年的论文竞赛中提出的麦比乌斯带仅仅创立了纯数学,现在它在化学中发展起来,而且已被化学家们熟练地运用,又为纯理论的数学家提出许多问题。

    你可以感到欣慰的是,麦比乌斯带不仅可以服务于化学家,而且也可以服务于工业家。B。F。古德里奇公司已经获得麦比乌斯输送带的专利权。在普通输送带中,带的一侧会有较多的磨损与撕裂。而在麦比乌斯输送带中,应力可分布到“两侧”,从而可以延长其使用期一倍。

    第七章  遗漏了的带一把手的三孔空心球形问题在40年代和50年代期间,许多在数学上思维敏捷的人曾经热情地工作,研制出第一部电子计算机。当然,他们成功了,而且在过去30年内,数学家们在电子方面的脑力成果已使许多科学领域发生了巨大的变革,然而,可笑的是,数学本身却没有进展。美国斯坦福大学的数学家约瑟夫。凯勒说道:“看看我们这个系,我们拥有的计算机比学校其他系,包括法国文学系在内,都要少。”

    “这是很可笑的事,”罗伯特。奥泽曼这样说,他是凯勒的同事,已在斯坦福大学工作了30年。“我们缺乏计算机显然是有几种原因,一是由于一些数学家的保守性——他们不愿意花时间去真正学习如何有效使用计算机——另外,他们认为使用计算机要花很多时间,这正是他们自己不愿努力思考的托词。”

    然而这些日子,由于前斯坦福大学学生、现在美国阿默斯特市马萨诸塞州立大学工作的戴维。霍夫曼有了一项引人注意的新发现,使凯勒和霍夫曼对计算机在数学中应用的未来更有信心了,借助于改革了的计算机绘图系统,霍夫曼及其同行、美国赖斯大学几何学家威廉。米克斯第三发现了无穷无尽的优美曲面,这些曲面遵循某些严格的标准。而目前已知的只有3种曲面符合这些标准。这些奇异的曲面已使麦比乌斯带似乎显得世俗而又平凡。无疑,他们填补了数学上的一项空白,而且还证明了这些曲面像麦比乌斯带一样可以用于数学之外的一些学科,诸如胚胎学与牙科学等多种学科。

    计算机对基础数学做出的最著名的贡献是一项“10岁”的成果,它打乱了老规律。1976年,美国伊利诺斯大学肯尼思。阿佩尔和沃尔夫冈。哈肯证明了著名的四色地图定理,该定理阐明了用这种方法至多只需4种颜色,就能把许多想象到的国家绘制在一张彩色平面地图内,而其中的任何两个邻国颜色不同。

    当时,我还是美国哈佛大学的一名大学生,当该证明的消息传到坎布里奇市时,我的微分方程老师中断了讲课,打开香槟酒瓶,热烈庆贺。124年来,四色地图定理(以简单的辞藻形容,就是多么的诱人)曾经搞乱了著名数学家与献身数学的业余爱好者的步伐,他们都曾徒劳地探索这项证明(或许可以预料地得到了反证)。我和穿着漂亮服装的同学都跟随着我们的老师,高举酒杯,为阿佩尔与哈肯已经攀登上数学的珠穆朗玛峰而干杯。

    几天以后,我们知道了阿佩尔与哈肯使用的未曾有过的高速计算机取得的这项证明:1,200小时的工作量仅用3小时就记录完。这项证明若用手工检验,简直是太长了。(好奇的读者可消磨10年的时间去研究《伊利诺斯数学杂志》第二十一卷中460多页的检验表。)

    我还能回忆起当时我们的心绪是多么的烦恼。这项证明不符合那时保罗。厄尔多斯所赞同的数学观点,他是一位到处走动的古稀老人,世界上最多产的数学家之一。厄尔多斯认为,上帝有一本很薄的小册子,书中含有所有重要数学定理的简明的第一流的证明。毫无疑问,四色地图定理包含在该书内,而阿佩尔与哈肯的证明肯定不在其列。

    我们的老师和我们都感到沮丧,有些人担心计算机会出差错,因而造成微妙的误差。另一些人承认计算机有助于定理的证明,但还希望众所周知的聪明的中学生有朝一日会不用计算机就能做出简明漂亮的证明,一项像厄尔多斯心目中上帝所赋予的证明。还有一些人则想知道,那冗长乏味的证明是否就是论题的最后定论;不过,他们都曾猜想过,四色地图定理是整个令人感兴趣的定理中的代表,简单的证明不会存在,也不可能存在。

    今天,10多年过去了,对阿佩尔与哈肯的工作还是没有定论,当然也没有宣告计算机证明的时代的到来。计算机固然已经发现了新素数,而且解出了阿基米德的关于牛的问题,但这不是证明一个定理。事实上,自从四色地图定理以来,还没有一个著名的定理要由机器来证明,霍夫曼和米克斯曾用另一方式使用计算机,它可能是未来的出路。他们曾利用计算机的数字捣弄能力获得洞察力,使他们无须计算机的帮助就能不断取得进展,并证明了一项基本结果。

    150年来,许多数学家都曾研究肥皂膜的形状,而且霍夫曼和米克斯发现的许多曲面都是与这些形状有关的。如果把一铁丝圆环浸没在肥皂液中,然后取出,那么横跨在铁环上的肥皂膜形状是平圆盘状的。这种形状被认为是极小的曲面,因为在可能横跨铁环的所有曲面中,平圆盘形具有最小的面积。

    如果再用两个相距很短的铁丝圆环,一个放在另一个上方,再浸入肥皂液后取出,那么跨过两个铁环的肥皂膜形状叫做悬索曲面,它类似核电厂冷却塔的形状。

    这种形状也是一种极小曲面;因为连接两个铁环的所有曲面中,没有其他曲面具有更小的面积。自然界总是偏爱极小曲面,是因为它们在物理上稳定:最小的面积意味着贮存的能量最小。

    可以把极小曲面的概念从肥皂膜的厨房物理学世界扩展到无限的超自然领域,我们把这个工作留给数学家们去做。无限小的曲面的说法似乎像是矛盾的,因为任何曲面要在一个方向或多个方向无限向外扩展,必须有一个无界的面积。如果一位数学家说一个无限的曲面是极小的,也就是说用制作肥皂膜的方法把该曲面充分缩小到有限范围内的最小面积,换句话说,如果你在该无限曲面上任何处做一魔术标记,并画一条非常小的闭合曲线,那么,在该曲线作为边界的前提下,曲线内的曲面将有最小的可能面积。

    平面就是无限小曲面的最简单例子;平圆盘状肥皂膜正是一个平面。如果悬索曲面的两端永远扩展,结果也成为另一个无限极小曲面。平面和无限扩展的悬索曲面都是本身不会相交的曲面。它们也都不会自身形成双重曲面,也不会无限接近。

    诸如平面和无界的悬索曲面等曲面都可变形,成为一个简单的有限物体:一个具有一些微孔和一些空心把手的空心球形。(不妨在皮箱上画出一个空心把手,它就可以使皮箱中的空气流过空心把手,再回到皮箱。从数学角度来说,每种空心把手都可以用来增加曲面的“连通度”,因为剪断空心把手将不会把曲面分成几块。)数学家们以他们丰富的想象力认为曲面都是由超柔性的橡胶制成。如果用拉长、压缩、扭转或其他手段,但不包括撕开、穿孔或填孔等方法使这些曲面之一变形成为另一种曲面,那么这两种曲面被认为具有同样的拓扑学结构。

    例如空心球形就可以拉伸成为卵形曲面,因此这两种曲面具有同样的拓扑结构。

    从拓扑学角度来看,平面与穿有单一微孔的球形相同,因为在这种奇特世界里,微孔可以无限地扯开,形成平面,这将使查尔斯。古德伊尔感到悲哀。

    悬索曲面与带有两个微孔的空心球形具有同样的拓扑结构;每个微孔都能拓宽并拉伸到无限大。(总的说来,多孔空心球形的每一个微孔都可以扩展成为无限大。)

    当霍夫曼和米克斯开始研究时,数学家们都知道,除了平面和无界的悬索曲面外,仅有另外一种无限极小曲面,它本身不会相交,在有孔的空心球形(带或不带把手)上,能用橡胶片的变形来模拟。这种曲面就是无界的螺旋面,它类似于扩展成无限大的螺旋。和平面一样,螺旋面与单孔空心球形具有同样的拓扑结构。

    人们知晓的这3种极小曲面几乎存在200年了,而且过去10年的一系列成果也都说明,似乎不太可能有第四种存在。例如,1981年,美国圣地亚哥市加利福尼亚大学的里克。舍恩就曾证明,带有两孔的空心球形仅能作为悬索曲面的模型,而不能作为无自身相交的其他无限小曲面的模型。同一年,巴西数学家卢奎西奥。豪尔赫则证明了,带有3孔、4孔或5孔和不带把手的空心球形都不能成为适宜的模型。

    霍夫曼说道:“由于在所有特殊情况下都已排除了新极小曲面的存在的可能性,许多人认为,而且试图证明没有新的例子能够存在。他们未能获得成功,但是大家却有一种共同的感觉,认为他们未能成功不是因为他们在无效地试图证明实际上是错误的东西,而是由于他们没有足够先进的数学工具。”

    1983年11月,霍夫曼获悉,一位名叫塞尔索。科斯塔的巴西研究生,在其博士论文中讨论了提及的曲面的疑难方程问题。科斯塔已能证明无限的、极小的曲面在拓扑学上可与带一把手的3孔空心球形相同。

    但是,科斯塔和其他任何人都不知道提及的曲面看起来像是什么,因为定义曲面的方程似乎都是相当复杂。况且,也没有人知道曲面是否本身相交。如果该曲面要加入平面、无界悬索曲面和无界螺旋面的极小曲面的神圣行列,那么它是不容许本身相交的。

    自身相交的问题不是一个简单的问题。霍夫曼解释说:“当你有一组曲面方程时,你不能计算出某些量,说‘是,它自身相交’或‘不,它自身不相交’。而从本质上说,你只能证明曲面的某一块不能与另一块相交。”然而,对于一个无限曲面,这是远远不够的,因为你还必须与无数块曲面相比较。

    霍夫曼计划使用计算机去计算曲面核心部分的坐标,然后绘制出曲面核心图。但是,常规的计算机制图学软件爱莫能助,因为它们所包括的主要是工程师们使用的立方形、球形和其他现有的形状,而不包括自身相交或扩展成无限大等奥秘的数学曲面。碰巧,他又获悉,美国马萨诸塞大学研究生詹姆斯。霍夫曼开发了一种计算机图形学的新软件。

    戴维。霍夫曼说道:“我们的对策计划是使用计算机观察面。如果我们看到了它们自身相交,那么我们打算发表一篇有关这个实例的简短论文,排除该曲面可能是无限小曲面的看法。也许我们必须在一本低等的杂志上发表,因为在数学杂志上很难发表这类问题的否定结果。要是我们看不到它们自身相交,那么我们也不知道我们要做什么,只能说证明曲面本身不相交的工作实在太难了。”

    然而,计算机生成的图形使他们的预料落空。它不仅显示出自身不相交,而且还显示出具有高度的对称性。它含有两条成直角相交的直线。霍夫曼在从不同角度“观看”曲面核心并经过长期艰苦的思考后,终于认识到曲面可以分解成为相同的8块。

    在物理学中,眼见为实;而在数学中,就不够了。霍夫曼和米克斯看到了对称图形之后,把图形搁置一边,仅根据方程就证明了曲面本
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!