友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
86读书 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

人与自然 系列丛书-第52章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



公斤左右的碘化银。当然,由于碘化银的价格比较昂贵,加上飞行或发射费用等因素,目前人工降雨主要还是用在农业生产或者是扑灭森林火灾等方面,使这种方法能取得较好的经济效果。而夏天为人们驱赶暑气的人工降雨还十分少见。




雷雨后的空气怎么会格外新鲜 
  每当雷雨过后,如果你打开窗户,一定会感到空气格外地新鲜。所以,人们往往喜爱在雷雨后到街上去逛逛,或者到野外去散散步,呼吸一下雨后的清新空气,那真是令人心旷神怡。可是,你知道为什么雷雨后空气会变得格外新鲜吗? 
  这里有两个原因:第一,什么东西经水一冲洗,立即换了个摸样,变得干干净净,清爽可爱。空气也是这样,一场倾盆大雨,就好像给空气痛痛快快地洗了个“淋员,把空气中的灰尘和其他脏东西全都冲掉了,空气就变得干净而纯洁;第二,那是因为下雷雨总是夹杂着闪电,而在闪电时,空气中便发生了一种化学变化——空气中的一部分氧气变成了臭氧。 
  臭氧,这是一种什么样的化学物质呢?原来,臭氧也是氧,而且它还是氧气的亲哥哥呢。浓的臭氧是淡蓝色的,有一股很臭的味儿,具有很强的氧化能力。我们知道,在一个氧分子中,含有两个氧原子;而在一个臭氧分子中,却含有3个氧原子。臭氧还有漂白和杀菌的本领呢。目前,科学家们正在试验用臭氧来净化水质。有人会担心,这样一来,水中会不会有臭味呢? 
  其实这种想法是多余的,因为稀薄的臭氧是一点儿也不臭的,反而会给人一种清新的感觉。雷雨后,空气中就产生了少量的臭氧。它能净化空气,杀死细菌,因此雷雨后的空气就特别的新鲜。 
  那么,臭氧又是如何产生的呢? 
  如果你走进一个电动机室里,关上窗户,就会闻到一股刺鼻的臭味儿。 
  原来,在正进行工作的电动机里,电压很高,电动机里产生了电火花,使周围的氧气受到激发,就有一部分变成了臭氧。 
  雷雨时的臭氧,也是这样产生的。一块带正电的云与一块带负电的云碰到了一起,放电时发出火花,就产生了闪电与雷鸣。闪电时的电压很高很高,可以达到几十亿伏特,所以它产生的巨大电火花,使空气中的一部分氧气变成了臭氧。 
  明白了这些,雷雨后,多到户外去散散步,呼吸新鲜空气,对身体可是大有好处埃你知道彩虹和雨的关系吗1981年7月29日,在英国查尔斯王子与黛安娜小姐结婚的大喜日子里,伦敦下了一场短暂的大雨,随后雨过天晴,伦敦上空出现了一条巨大的色彩绚丽的彩虹,为王子的婚礼增添了喜庆的色彩。人们都以为这是巧合,有人甚至归功于上帝为英国皇室助兴。其实,这是英国气象学家创下的人工影响气候的奇迹。他们利用雨后天空最有可能出现彩虹的气象科学原理,分析了这天伦敦上空的各种气象因素,认为如果采取人工增雨的方式将会在雨后出现彩虹,结果大获成功。 
  “赤橙黄绿青蓝紫,谁持彩练当空舞?”彩虹究竟是怎样产生的呢? 
  彩虹是大气中的细小水滴经太阳光折射、反射后形成的弧形(或圆形)光带。由于受天气条件和天空状况的影响,彩虹时有时无,时亮时暗,时宽时窄,极富魅力,成为历代文人墨客最为青睐的天象之一。南北朝时的文人江淹在《赤虹赋》中写道:“残雨萧索,光烟艳烂;水若金波,石似琼岸,俄而赤虹电出。。”为我们展现了一幅雨后彩虹的风景画。 
  彩虹也可能出现在雨前。《诗经》曰:“朝隋于西,崇朝其雨。”是说西边有虹是雨的一种征兆,意思和民间流传的“东虹日头西虹雨”相近,有一定的科学道理。因为我国天气系统一般都是从西向东移动的,西边有虹,则告诉人们那里已聚集了大量的小水滴,这种坏天气将移入本地区。 
  彩虹有时还出现在雨中。北宋沈括在《梦溪笔谈》中写道:“虹乃雨中日影也,日照之,则有之。”因为虹的形成须有光照,所以这里的雨就是我们通常说的“太阳雨”。刘禹锡在《竹枝词》中对这种雨作过形象传神的描述:“东边日出西边雨,道是无晴却有晴。” 
  彩虹最多的当然还是出现在雨后。因为雨后空气中的小水滴很多,当光照条件适宜时,最易形成长虹。晚唐诗人李商隐就有“虹浮青嶂雨,鸟没夕阳天”的诗句。有时因为雨后空气中的小水滴分布不均,天空中还会出现“残虹”和“断虹”。 
  我国江南一带,夏秋之际出现雨后彩虹的机会较多一些,届时你不妨自己留心观察一下这美丽的自然景观,对雨和彩虹的关系就会有亲身感受了。




《气象学》写成 
  《气象学》为古希腊著名学者亚里士多德所著,是世界上最早的有系统的气象学专著。大约完成于公元前340年左右,全书共4册。前3册讨论气象学方面的问题,第4册主要讨论化学上的问题。在亚里士多德以前,虽然有许多对气象现象提出的解释,但都是零星和片断的,甚至是带有神话色彩的,并没有系统的研究。 
  亚里士多德将先前所有的各种气象学思想和经验进行了系统的整理,而且提出了自己对各种天气现象的见解和理论,使之成为一门有系统的科学——古代气象学。亚里士多德认为:地球是由火、空气、水、土四种要素组成的,这些要素由于太阳的作用可以互相转换。太阳把地面上因水受潮的物质通过干燥,使其变成热气离开地面,于是就形成风,与前者的蒸发物一起产生空气。云、雨、雪、霜、露都是由于空气温度的变化而形成的。《气象学》和古希腊许多有关自然界的现象和理论一样,都是从经验性科学发展出来的。有相当的猜测性,甚至不当之处。此书的问世,使亚里士多德成了以后2000年中气象理论方面无可置疑的权威。在17世纪末以前,西方所有有关气象学上的著作和论著都没能脱离亚里士多德气象学的影响。 
  第一张天气图的绘制 
  绘制第一张天气图的是德国物理学家布兰德斯。从1816年起,他在德国的布累斯劳开始研究1783~1795年间曼海姆气象学会的观测记录,绘制出了这些年间的每天综观气象图,将各地的气压和风向值填入地图,并绘出等压线,以研究云量、风和气压系统之间的关系。天气图范围从俄国的乌拉尔山到西班牙的比利牛斯山。1820年,他出版了所绘制的天气图和说明书。由于当时没有电报和电话之类的信息传递工具,各气象站之间的资料交换只能靠邮运,所以这一技术没能立即用于天气预报。即使如此,天气图的出现为分析气压、风和云雨之间的关系以及建立天气系统的概念做出了贡献。 
  布兰德斯当时根据天气图的分析认为,风向与气压的高低有关,并且认为高气压区一般天气良好,低气压区一般天气恶劣。天气图的出现是近代气象学研究起点的标志,布兰德斯也因此被誉为气象学的先驱。




人工气候室的发明 
  1949年在美国的帕塞迪纳,建成了世界上第一个人工气候室,它可以自动控制室内的温度、湿度、光照强度和二氧化碳浓度。同时还设有空气过滤和消毒灭菌设备。人工气候室的出现,引起了植物学界的极大重视,接着在生物科学的不同领域也开始研究和设计了不同用途的人工气候室,应用范围从植物扩大到农业、动物饲养、鱼类饲养等诸多方面,为加速农业生产的工厂化发展开辟了新途径。 
  实验结果表明,有一种感光性强的水稻品种,在自然条件下生长,从播种到抽穗需要105天,全生育期140天。可是,在人工气候室里,由于得到了比较理想的温度、湿度和光照条件,从播种到抽穗仅需要64天,全生育期仅需要88天,而且穗大、粒重,不受自然气候条件制约,一年可连续种植4代。 
  中国科学院上海植物生理研究所于1969年也建成了一座大型植物人工气候室,使用面积达360平方米,有人工光实验室19间,自然光实验室6间,温度可控范围是0~50℃,相对湿度可控范围是30~90%,光照强度可达3万支烛光。经过多年的运转和使用证明,性能良好。 
  气温上升引起自然界变化之谜 
  从理论上讲,大气中二氧化碳的“温室效应”早为人们所承认,但有人对二氧化碳的增加不会导致全球性的气温升高表示怀疑。他们的主要依据是,从北半球的温度记录来看,本世纪40年代以来,平均气温大约每10年下降0。1℃,现在可能继续在下降。近20年来,大气中二氧化碳的含量却在不断增加,这似乎表明,气温的变化与二氧化碳的增加相悖。同时,另一些人认为,自70年代以来,亚欧北部地区在持续转暖,这可能与二氧化碳的增加有关。 
  美国科学家通过近十年来的人造卫星拍摄的南极照片的比较,发现近年来夏季南极的冰雪比十年前明显减少。他们还发现有些地方的海平面,近年来有上升的趋势。他们认为,这可能是由于大气中二氧化碳增加的结果。 
  我国的气象资料表明,近年来我国东北地区,尤其是黑龙江省,气温明显上升,越往南增温越不明显;南方有些地区气温似乎在下降。 
  理论分析表明,大气中的二氧化碳增加1倍,可使大气的平均温度上升2。9℃。地面温度的上升随纬度的增加而增加:在纬度40度的地方接近平均值,在两极地区比平均值高3倍左右,在赤道地区只升高平均值的一半左右。 
  根据这种分析,我们看看近百年来由于二氧化碳增加对大气温度的影响:1860年大气中二氧化碳含量是290PPm,1960年是314PPm,1980年是336PPm。这就是说,1960年以前的100年间二氧化碳只增加了24PPm,而1960年以后的20年间增加了22PPm,后者的增长速度为前者的4。6倍,原因不仅是燃烧的石油和煤炭以惊人的速度增加,同时也与世界人口的激增以及大规模的森林植被被破坏有关。理论计算表明,二氧化碳增加24PPm,可使平均气温上升0。17℃,在100年间气温对气候的影响是微不足道的,就是20年内气温上升0。17℃,在一般地区也难以觉察,因为一个地区的温度年平均值波动±0。2℃是常有的事。但是,由于两极地区的温度要比平均值高3倍左右,所以近年来两极地区的温度可能要比20年前高0。5℃左右,这就有可能使两极的冰雪在夏季融解得更多些。 
  从今后的能源结构来看,我们可以认为在今后半个多世纪内,大气中二氧化碳的增加速率将与过去20年基本一致。这样,如果以1960年大气中二氧化碳的含量为基数,到2000年增加20%,可使平均气温上升0。6℃,这还不会给气候带来多大影响;到2040年增加到72%,气温要比现在高2℃,这也不能说就是很不适宜的气候。问题是由于这种温度上升得太突然,不是在几百几千年,而是在短短的几十年内,这对各方面的影响就不能不引起我们的注意了。 
  如果大气平均温度上升2℃,赤道地区可上升1℃左右,两极地区可上升6℃左右。那时候高纬与低纬的温度梯度将比现在明显减小,这就必然会影响径向大气环流。径向大气环流是影响天气过程的主要因素之一,如雨区的分布、季节风等无不与径向环流有关。估计那时的副热带高压可能向高纬地区推进5℃左右,这就会造成某些原来是多雨的地区变为少雨地区;有的则正好相反。 
  由于平均气温上升,总的蒸发量和降水量也将增大。就全世界而言,高纬地区可能受益大些,中纬地区可能受害大些,低纬地区可能受影响较校我们再来看看两极。大家知道,地球上的冰大约有95%在南极,冰层最厚可达3公里,这些冰如全部融化,可以使全世界的海面上升64米。如果南极地区温度上升6℃,当然不可能使这里的冰全部融解。科学家估计最大可能融解10%的冰雪,这就会使全世界的海平面上升6米左右。 
  两极冰雪的融化会使海平面上升,这就相当于使物质从接近地球自转轴的位置向远离自转轴的位置扩散。这种效应将引起地球的转动惯量增大,使地球的自转速度减校详细分析表明,海平面上升6米,至少可使地球自转一周的时间减慢0。03秒。现在地球自转的减慢是每世纪使一昼夜变长0。0015秒,这主要是日月引力产生的潮汐摩擦引起的。地球自转速度快点或慢点对人类的生活以及生态系统无关紧要,值得注意的是可能会引起一系列地球动力学方面的效应,会在地壳上出现一个自西向东的惯性力,破坏各板块之间力的平衡,容易在某些地区的地壳内积累应力,加剧地震或火山振动。我国天文工作者和地震工作者早就注意到,我国华北地区的几次大地震,几乎都发生在地球自转减慢的时期。 
  以上的讨论大都还属于理论上的推测。由于大气中二氧化碳的增加可能引起的后果,是关系到亿万人生命安全的大事,所以应当以严肃的科学态度来展开讨论,以得出一个较为正确的预见。如果确实存在着某些不利因素,就应当尽早采取相应的措施,以防患于未然。 
  究竟二氧化碳的增加会带来多大影响,多数人还抱着将信将疑的态度。 
  我们估计,这种“情况”不会持续很久,大约在本世纪末以前就可以得出结论。




“厄尔尼诺”现象与气候异常 
  “厄尔尼诺”西班牙语意为“圣婴”,主要指太平洋的热带海洋和天气发生异常,使整个世界气候模式发生变化,造成一些地区干旱而另一些地区又降雨量过多。这种气候现象通常在圣诞节前后开始发生,往往持续好几个月甚至1年以上,影响范围极广。 
  对“厄尔尼诺”现象形成的原因,科学界有多种观点,比较普遍的看法是:在正常状况下,北半球吹东北信风,南半球吹东南信风。信风带动海水自东风向西流动,形成赤道洋流。从赤道东太平洋流出的海水,靠下层上升涌流补充,从而使这一地区下层冷水上翻,水温低于西部,形成东西部海温差。但是,一旦太平洋东部南半球的东南信风减弱,甚至变为西风时,赤道东太平洋地区的冷水上翻减少或停止,海水温度就升高,形成大范围的海水温度异常增暖。而突然增强的这股暖流沿着厄瓜多尔海岸南侵,使海水温度剧升,冷水性鱼群因而大量死亡,海鸟因找不到食物而纷纷离去,渔场顿时失去生机,使沿岸国家遭到巨大损失。 
  1982年4月~1983年7月的“厄尔尼诺”现象,是几个世纪来最严重的一次,造成全世界1300~1500人丧生,经济损失近百亿美元。1986~1987年的“厄尔尼诺”现象,使赤道中、东太平洋海水表面水温比常年平均温度偏高2℃左右;同时,热带地区的大气环流也相应地出现异常,热带及其他地区的天气出现异常变化;南美洲的秘鲁北部、中部地区暴雨成灾;哥伦比亚境内的亚马逊河河水猛涨,造成河堤多次决口;巴西东北部少雨干旱,西部地区炎热;澳大利亚东部及沿海地区雨水明显减少;我国华南地区、南亚至非洲北部大范围地区均少雨干旱。1987年初,这次“厄尔尼诺”现象进入盛期。 
  1990年初又发生“厄尔尼诺”前兆现象。这年1月,太平洋中部海域水面温度高于往年,除赤道海域水面温度比往年高出0。5℃外,国际日期变更线以西的海域水面温度也比往年高出将近1℃;接近海面的28℃的暖水层比往年浅10米左右;南美洲太平洋沿岸水域的水位比平时上涨15~30厘米。 
  酸雨——危及生态的祸水 
  由于空中二氧化碳的存在,雨水微呈酸性,其酸度的全球平均值为pH5。6,该值一般用做衡量降水是否冠以酸雨之称的标准。酸雨一词,广义地说,不但包括“酸雨”,也包括酸雾、酸雹、酸雪、酸露等。 
  酸雨产生的主要原因是人类不断向大气排放硫和氮的氧化物。一般说来,70%的酸雨由二氧化硫引起,而30%由氧化氮所致。煤炭和石油燃料是最重要的二氧化硫来源,天然气居第3位。氧化氮的最主要释放源是各种交通运输媒介,包括汽车、飞机等等。在太阳光和其他物质的影响下,进入大气的酸雨气体二氧化硫和氧化氮,缓缓氧化,分别生成硫酸和硝酸,这两类强酸随雨、雪、雾、露降落到地面,便形成酸雨。 
  移动的气流可将酸雨气体带到几百公里之外地区,排放后24小时,酸性烟雾随风漂移达650公里。在挪威和瑞典,80%~90%的酸雨是“进口”的,其中10%来自英国,大约每年有91500吨含硫气体。加拿大东南部酸雨的50%~70%来源于美国东北部工业区,而加拿大排放的酸性气体也不可避免地落在美国相邻的地区。 
  酸雨的危害是,湖泊酸化而引起鱼类数量骤减乃至大量死亡。在瑞典、挪威和北美地区此现象尤为显著,在挪威南部的2000个湖泊中1/3全无鱼影;酸雨还造成森林衰减,在德国西部50%的森林受酸雨所害,走向死亡;酸雨还危及人类的健康,在酸性条件下,汞会通过食物链累积于鱼体内,进而危害人体;灰泥、石头甚至钢铁等材料都会受酸雨的腐蚀而被毁,世界各地的许多名胜古迹,正面临着在酸雨中无声无息地消失的危险。 
  治理酸雨包括两个方面:一是医治已酸化的环境,如瑞典、美国和德国等国已尝试用碳酸钙挽救酸雨危害的水体和森林;二是严格控制和减少酸雨气体的排放,其重要措施是安装废气净化装置和改进燃烧方式。自1982年起,挪威、芬兰、瑞典、丹麦、奥地利等国提出,到1993年本国排硫量在1980年的基础上降低30%,加拿大则提出在同期内降低50%的更高标准。 
  由于汽车是氧化氮的主要释放源之一,所以安排催化转化器和改进引擎有重大意义。 
  日照最多和最少的地方 
  地球表面日照的多少,关系到人的活动和生物的生长发育。在不同的地方,日照时间的长短和太阳辐射量往往不一致,这同一个地方的云量、地理位置和海拔高度都有关。尤其与云量的关系最密切。 
  我国日照时数最多的地方是西北部气候干旱地区,那里云量少,例如在甘肃、新疆交
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!